forum

Scorpiour's Modding Queue (Modding Team)

posted
Total Posts
1,264
show more
Avena

Scorpiour wrote:

Here are THREE screenshot from THREE different anime, post all the correct answer of ANIME Name with SEASON Number & EPISODE Number
You guys obviously didn't read this well, you are supposed to also give the episode number and the season number.
Kayano
If there are 2 coprime integers x,y satisfied (x^2)^2+(y^2)^2=z^2
so x^2=a^2-b^2, y^2=2ab, z=a^2+b^2 (a>b>0; a, b are coprime integers)
y must be even number; a, b have different parity
from x^2=a^2-b^2 we can see a must be odd and b must be even
also from here we know x^2+b^2=a^2
so x^2=m^2-n^2, b^2=2mn, a=m^2+n^2 (m>n>0; m, n are coprime integers)
so y^2=2ab=4mn(m^2+n^2)
so m, n, (m^2+n^2) are perfect squares
suppose m=p^2; n=q^2; m^2+n^2=r^2. (p,q,r) also satsfied x^4+y^4=z^2
but z=a^2+b^2=(m^2+n^2)^2+4m^2n^2>r^4>r>0
so from z we can always find a smaller integer satisfied the equation
so, there's no solution
kamisamaaa
数学题
假设 (x,y,z)为方程(x^2)^2+(y^2)^2=z^2一个解并且x,y互质,y为偶数,则
x^2=a^2-b^2;y^2=2ab;z=a^2+b^2,其中a>b>0,a,b互质,a、b 的奇偶性相反。
由x^2=a^2-b^2得a必定是奇数,b必定是偶数。
另外,亦得x^2+ b^2=a^2,再从此得x=c^2-d^2;b=2cd;a=c^2+d^2,其中c>d>0,c,d互质,c、d的奇偶性相反。
因而y^2=2ab=4cd(c^2 + d^2),
由此得c、d和c^2+d^2为平方数。
于是可设c=e^2;d=f^2;c^2+d^2=g^2,即e^4+f^4=g^2。

换句话说,(e,f,g)为方程x^4+^y^4=z^2的另外一个解。
但是,z=a^2+b^2=(c^2+d^2)^2+4c^2d^2>g^4>g>0。
就是说如果我们从一个z值出发,必定可以找到一个更小的数值 g,使它仍然满足方程x^4+y^4=z^2。如此类推,我们可以找到一个比g更小的数值,同时满足上式。
但是,这是不可能的!因为z为一有限值,这个数值不能无穷地递降下去 由此可知我们最初的假设不正确。所以,方程x^4+y^4=z^2没有正整数解
MillhioreF
Is the easy map ticket still open?

Kayano

MillhioreF wrote:

Is the easy map ticket still open?


lol you need 30x100
Topic Starter
Scorpiour
yes still open but you need 30x100
MillhioreF
Lol, I misunderstand... How about this?

Topic Starter
Scorpiour

MillhioreF wrote:

Lol, I misunderstand... How about this?

great you got one modding ticket
Hard
For the Anime...

First one's Toradora. It has only 1 Season. It's Episode 7.

Second one AnoHana. Also just 1 Season. Episode 11.

Third is... Is...

Black Lagoon Ep. 7??
Topic Starter
Scorpiour

OniJAM wrote:

If there are 2 coprime integers x,y satisfied (x^2)^2+(y^2)^2=z^2
so x^2=a^2-b^2, y^2=2ab, z=a^2+b^2 (a>b>0; a, b are coprime integers)
y must be even number; a, b have different parity
from x^2=a^2-b^2 we can see a must be odd and b must be even
also from here we know x^2+b^2=a^2
so x^2=m^2-n^2, b^2=2mn, a=m^2+n^2 (m>n>0; m, n are coprime integers)
so y^2=2ab=4mn(m^2+n^2)
so m, n, (m^2+n^2) are perfect squares
suppose m=p^2; n=q^2; m^2+n^2=r^2. (p,q,r) also satsfied x^4+y^4=z^2
but z=a^2+b^2=(m^2+n^2)^2+4m^2n^2>r^4>r>0
so from z we can always find a smaller integer satisfied the equation
so, there's no solution

kamisamaaa wrote:

数学题
假设 (x,y,z)为方程(x^2)^2+(y^2)^2=z^2一个解并且x,y互质,y为偶数,则
x^2=a^2-b^2;y^2=2ab;z=a^2+b^2,其中a>b>0,a,b互质,a、b 的奇偶性相反。
由x^2=a^2-b^2得a必定是奇数,b必定是偶数。
另外,亦得x^2+ b^2=a^2,再从此得x=c^2-d^2;b=2cd;a=c^2+d^2,其中c>d>0,c,d互质,c、d的奇偶性相反。
因而y^2=2ab=4cd(c^2 + d^2),
由此得c、d和c^2+d^2为平方数。
于是可设c=e^2;d=f^2;c^2+d^2=g^2,即e^4+f^4=g^2。

换句话说,(e,f,g)为方程x^4+^y^4=z^2的另外一个解。
但是,z=a^2+b^2=(c^2+d^2)^2+4c^2d^2>g^4>g>0。
就是说如果我们从一个z值出发,必定可以找到一个更小的数值 g,使它仍然满足方程x^4+y^4=z^2。如此类推,我们可以找到一个比g更小的数值,同时满足上式。
但是,这是不可能的!因为z为一有限值,这个数值不能无穷地递降下去 由此可知我们最初的假设不正确。所以,方程x^4+y^4=z^2没有正整数解

Prove not complete: you didn't explain why a & b are coprime and m &n are coprime either.
Kayano
I wonder if Sco is an S while I'm an M.
Edit: No wonder, we are.
Topic Starter
Scorpiour

OniJAM wrote:

odd^2 mod 4 == 1 <- (2t+1)^2=4t^2+4t+1 mod 4 == 1
even^2 mod 4 == 0 <- (2t)^2=4t^2 mod 4 == 0 (t>=0 and t is integer)
so x,y,z are all evens, or z and one of x,y are odds
if x,y are not coprime integers, we can extract the common divisor because z must have the same common divisor
so we can suppose x is odd, y is even, they are coprime integers
m&n same as above
you may not post multiple times and your answer was googled :>
KRZY
Hollow Wings
哎,居然已经有人做出来了啊噗

其实他们证的都是正确的啦,虽然只是证明了x,y,z互质的情况下233,不过其实是一样的噗

(我自己做的时候绕在这里绕了半天才绕出来,结果一看他们的答案发现我是反着推上去的,然后就懵了噗。。。

设(x^2)^2+(y^2)^2=z^2存在正整数解
构建勾股数:
x^2=a^2-b^2
y^2=2ab
z =a^2+b^2
设a,b最大公因数为t,a=tm, b=tn, m,n互质
x^2=t^2*(m^2-n^2)
y^2=t^2*(2mn)
z =t^2*(m^2+n^2)
又由z=sqr((x^2)^2+(y^2)^2)=t^2*sqr((m^2-n^2)^2+(2mn)^2)存在正整数解,得z存在因数t^2
则设x/t=p, y/t=q, z/t^2=r,p,q,r互质

p^2=m^2-n^2
q^2=2mn
r =m^2+n^2
(接下来的过程我和他们的就一样啦,反正就是勾股数化为勾股素数,然后再往小逼近发现循环了于是就是假设错了,这么个意思,我就不写了

超讨厌数论啊噗

sco大大又要用超简单的证明过程来鄙视我们了噗

赖皮法:由费马大定理得x^4+y^4=a^4无正整数解,设x,y为正整数,则a无正整数解,即a^2=z无正整数解
Aleks719
blahblahblah, just to make things clear: x^2+y^2=z^2 is a pythagorean triple. in geometry there are not so many combbinations of coprime numbers for pythagorean triple, rest is said couple of times before.
Sephibro
solution to game #2

SPOILER
Let's assume that (x,y,z) with x, y, z > 0 is the integer solution to the equation that MINIMIZES z then:

1. if GCD(x,y) = d != 1, then (x/d , y/d , z/d^2) is still an integer solution to the equation.
so GCD(x,y) = 1

2. (x^2, y^2, z) is a pythagorean triple, hence they exist a,b INTEGER with 0<b<a that satisfy x^2 = 2ab , y^2 = a^2 - b^2 , z = a^2 + b^2, with GCD(a,b) = 1 and a !≡ b (mod 2) (if a is even then b is odd and vice versa). If a is even, then b is odd, so y^2 ≡ a^2 - b^2 ≡ -1 ≡ 3 (mod 4) which is an absurd because a square is always ≡ 0 or 1 (mod 4)
so they exist a,b INTEGER with 0<b<a that satisfy x^2 = 2ab , y^2 = a^2 - b^2 , z = a^2 + b^2, with GCD(a,b) = 1, with a odd and b even

3. as seen on 2, (y,b,a) is a pythagorean triple
so they exist u, v INTEGER with 0<v<u that satisfy b = 2uv , y = u^2 - v^2, a = u^2 + v^2, with GCD(u,v) = 1, with u !≡ v (mod 2)

From 2 and 3, we have that
x^2 = 4uv(u^2 + v^2)
since GCD(u,v) = 1, GCD(u, u^2+v^2) = GCD(v, u^2+v^2) = 1 -> so u, v and u^2+v^2 are squares of integer numbers
u = p^2 , v = q^2 , u^2+v^2 = r^2

from this, we have that p^4 + q^4 = r^2

r <= r^2 = u^2+v^2 = a <= a^2 < a^2 + b^2 = z

we found a smaller solution, which contraddicts the underlined hypothesis in the first sentence.

QED

:) :) :)
Topic Starter
Scorpiour
Yes these solutions are correct however most of the solution you can find online omits an important step that prove why x & y are co-prime which i expected :>
Sephibro
read better the first step of my solution then ;P
KRZY

Scorpiour wrote:

Yes these solutions are correct however most of the solution you can find online omits an important step that prove why x & y are co-prime which i expected :>
I'm not sure why you think proving x and y are coprimes is so important, it's trivial in that if they are not, you can reduce the whole equation until they are.

Also the solutions would be easily found online because your problem is a popular one which is a few hundred years old..
Sephibro
if they aren't coprime the triple that you chose in the beginning is not the one that minimizes z, so it's an absurd
Topic Starter
Scorpiour

KRZY wrote:

Scorpiour wrote:

Yes these solutions are correct however most of the solution you can find online omits an important step that prove why x & y are co-prime which i expected :>
I'm not sure why you think proving x and y are coprimes is so important, it's trivial in that if they are not, you can reduce the whole equation until they are.

Also the solutions would be easily found online because your problem is a popular one which is a few hundred years old..
Your second line explained why i emphasized the coprimes proving ~
KRZY
Sephibro
SPOILER
from my previous solution



you can write the bolded part thanks to the fact that u and v are coprime
to ensure that, you need a primitive pythagorean triple at point 3, and to ensure this you need a primitive pythagorean triple at point 2.
that pythagorean triple is primitive if and only if x and y are coprime
lgdry15
学霸们,我们做朋友吧! :o
Topic Starter
Scorpiour
That prove is what i'm looking for but i never expect you guys try the answer on math quiz or find quiz once and once again o_o
LZCSC
1.とらドラ! 1-7
2.夏目友人帐 1-7
3.

无语了,浪费了一上午,啥都没找到,你们继续玩
Sephibro

Scorpiour wrote:

That prove is what i'm looking for but i never expect you guys try the answer on math quiz or find quiz once and once again o_o
wat
Topic Starter
Scorpiour
somebody argues me that "Scorpiour is just use the mappers for his amusement".

well, i will review the answers of my last math quiz again to decide who may win the ticket, and the anime puzzle ticket is still available

however there's no more quiz here anymore.

GG
Yumeno Himiko

Scorpiour wrote:

somebody argues me that "Scorpiour is just use the mappers for his amusement".

GG
I think just because the quizzes are too difficult and really cost mappers' time.
Answering a question is really fun,but answering a rather difficult question seems not so cool.
Some people spend half a day and even one day on your quizzes but can't find the answers,of course they will not feel happy.
I think you should make the quizzes easier,or make the answers Open-ended, then everyone will be willing to answer them and won't worry about whether they answer right or wrong.

Well,in my opinion,I like the way you giving tickets,if you can make those quizzes easier.
KRZY
I really liked the (root2 + root3)^100 problem, although I didn't try to solve it.
Regou
1.とらドラ! Season 1- episode7
2.夏目友人帐 Season 1- episode7
3.薄樱鬼 Season 1- episode7
Topic Starter
Scorpiour
incorrect
Topic Starter
Scorpiour
/me sighs

somebody issues me closed the quiz queue.. what can i do
Topic Starter
Scorpiour
well , i decide to ignore others comment.

I never force anyone to participate so

more quiz with modding tickets are coming
ZZHBOY
Sephibro
so nobody won the number theory round?
Topic Starter
Scorpiour
Try to find out the answer:

there are three characters without face from three different anime

post all correct character name and the anime name

one person one post, no edit allowed

the one who posts the correct answer first will win a modding ticket from me

Topic Starter
Scorpiour

Sephibro wrote:

so nobody won the number theory round?
i'm still evaluating your answer
ZZHBOY
伊原摩耶花 冰果
秋山澪 KON
金闪闪 fz
ErunamoJAZZ
Hyouka: Ibara Mayaka
Joshiraku: Anrakutei Kukuru
ToAru no Index: Tsuchimikado Motoharu?


Itry :P http://osu.ppy.sh/s/107979
Nunnally Lamperouge
1.冰果 伊原摩耶花
2.夏色奇跡 花木优香
3.魔法禁書目錄 土御门元春
Chloe
Ibara Mayaka - Hyouka
Akiyama Mio - K-ON
Tsuchimikado Motoharu - ToAru no Index
Topic Starter
Scorpiour

ErunamoJAZZ wrote:

Hyouka: Ibara Mayaka
Joshiraku: Anrakutei Kukuru
ToAru no Index: Tsuchimikado Motoharu?


Itry :P http://osu.ppy.sh/s/107979
good
Sellenite
1.ice cream
2.hehe
3.coin
Topic Starter
Scorpiour
similar to prev quiz, still Three characters

ego_17
1Martina Zoana - slayers next
2Norah Arendt - Ookami to Koushinryou
3em Yuno Gasai - Mirai Nikki ?
my map https://osu.ppy.sh/s/106279
Sellenite
beauty fighter
wolf
my wife
Chloe
1.天元突破 优子·利坦拿
2.狼与香辛料 诺儿菈·艾伦
3.未来日记 我妻由乃
Topic Starter
Scorpiour

ego_17 wrote:

1Martina Zoana - slayers next
2Norah Arendt - Ookami to Koushinryou
3em Yuno Gasai - Mirai Nikki ?
my map https://osu.ppy.sh/s/106279
nice~~
Topic Starter
Scorpiour
Quiz #3

there are 9 positive numbers as a sequence with a formula of general term

post the 10th number ( you needn't to write out the formula )

one person one post, no edit allowed

320057779
45232
10004921
81263099
190134
319944613
55815655
326755503
56536998
..?
Chloe

Scorpiour wrote:

Quiz #3

there are 9 positive numbers as a sequence with a formula of general term

post the 10th number ( you needn't to write out the formula )

one person one post, no edit allowed

320057779
45232
10004921
81263099
190134
319944613
55815655
326755503
56536998
..?
my math teacher died in a early time, I quit
Koiyuki
123456788
Arlecchino

Chloe wrote:

Scorpiour wrote:

Quiz #3

there are 9 positive numbers as a sequence with a formula of general term

post the 10th number ( you needn't to write out the formula )

one person one post, no edit allowed

320057779
45232
10004921
81263099
190134
319944613
55815655
326755503
56536998
..?
my math teacher died in a early time, I quit
owh.. yea.. atama ga itai... yo... i can die by facerolls
Sellenite
111111111!
Ulysses
151430771
YoshinoSakura
15175731
Yumeno Himiko
The answer should be 123456788 and the reason is here.

SPOILER
Well they are all roots of this equation
x^10-1294070722 x^9+667395555810652935 x^8-175697917976151422544451332 x^7+25361037237788364366816447004541667 x^6-2036252191926266620345699457610392414631090 x^5+87619632102485100661167183211502861408006268750065 x^4-1772117174931041816014099013237349419378055049276549654328 x^3+11011330627551295002347288664176730257951626517341003284662497572 x^2-2509547295261047511704607969010248172767105081297698303882340184749648 x+91147017802460151881398738157853197176173298245817673626627442414227280640=0

:)
Kuuhaku

Scorpiour wrote:

Quiz #3

there are 9 positive numbers as a sequence with a formula of general term

post the 10th number ( you needn't to write out the formula )

one person one post, no edit allowed

320057779
45232
10004921
81263099
190134
319944613
55815655
326755503
56536998
..?
夢消失……
随便猜一个好了
806628686
Jemmmmy
无从下手,sad跪,只知道10004921是素数
Kibbleru
123456788
wmtokok
135791111

Orz..
Amasuro
123456788
mintong89
123456789
-Teina-
希望是'' 0 ''
blahpy
The nth term of the sequence is equal to b(n), where b(n) denotes a blahpy number. The 10th term of the sequence is 335833314.

The first few blahpy numbers are defined as:

b(1) = 320057779
b(2) = 45232
b(3) = 10004921
b(4) = 81263099
b(5) = 190134
b(6) = 319944613
b(7) = 55815655
b(8) = 326755503
b(9) = 56536998
b(10) = 335833314
Rukaru
123456788
FuFuLu_old
123456788
Koalazy
123456788!
pandorawindy
https://osu.ppy.sh/b/435515&m=0
this is my first map...thank you very much :)
[ -Scarlet- ]
123456788
Pretty Rhythm
123456788
kamisamaaa
123456788
简直为难人 我数学是体育老师教的你造么
Setz
19803508
nanda2009

blahpy wrote:

blahpy numbers
I admit that's a good usage of your alias, whatever it actually means.
Ujimatsu Chiya
123456780
moonlightleaf


不算惹 太难,一张纸半管笔美丽
P A N
333566793
Setsurei
478294496
blahpy

nanda2009 wrote:

blahpy wrote:

blahpy numbers
I admit that's a good usage of your alias, whatever it actually means.
It doesn't mean anything lol

I only just remembered this puzzle was here, looks like no-one found the actual solution yet though lol
Start
my answer: No solution
Abe Nana
333566793
Ciyus Miapah
~ 066606660 ~

*Fort runs
renew
10004921
Topic Starter
Scorpiour
Quiz queue now:

First one is Mathematics:



The one who posts the correct answer first will earn a modding ticket from me

one person per post, no edit allowed!
wmfchris
k^3/8
Topic Starter
Scorpiour

wmfchris wrote:

k^3/8
手误手误
Micka
wat
IamBaum
K>=√³(8xyz)
xxdeathx
xyz = (k-x)(k-y)(k-z)

x = k-x
y = k-y
z = k-z

2x = k
2y = k
2z = k

x = k/2
y = k/2
z = k/2

xyz = (k^3)/8

i don't know about here but you want <= but = is part of <= i guess...
Topic Starter
Scorpiour

xxdeathx wrote:

xyz = (k-x)(k-y)(k-z)

x = k-x
y = k-y
z = k-z

2x = k
2y = k
2z = k

x = k/2
y = k/2
z = k/2

xyz = (k^3)/8

i don't know about here but you want <= but = is part of <= i guess...
if x=4, y=6 z=5 and k = 10, then?
sjoy
x=kaa/(aa+bc)
y=kbb/(bb+ca)
z=kcc/(cc+ab)
然后我懒了
Sonnyc
It seems that when x=y=z=1/2k, it is the maximum of xyz, but I can't explain in detail to make a proof orz
lgdry15
设x+a=y+b=z+c=k,则xyz=abc
所以,根据均值定理,
k>=2*sqrt(xa)
k>=2*sqrt(yb)
k>=2*sqrt(zc)

所以k^3>=8*sqrt(xyzabc)
又xyz=abc
所以k^3>=8*(xyz)
所以xyz<=(k^3)/8

得证! :)

https://osu.ppy.sh/s/178495 :)
lightr
令Z≥X≥Y,所以XYZ的最大值为Z^3且等于(K-Z)的三次方

---> Z^3 = (K-Z)^3
---> Z=K-Z
---> Z=1/2K

所以Z^3=(1/2K)^3 , 这个是最大值

所以XYZ小于等于K^3/8
Sylith
Omg im late ; ;
xxdeathx

Scorpiour wrote:

xxdeathx wrote:

xyz = (k-x)(k-y)(k-z)

x = k-x
y = k-y
z = k-z

2x = k
2y = k
2z = k

x = k/2
y = k/2
z = k/2

xyz = (k^3)/8

i don't know about here but you want <= but = is part of <= i guess...
if x=4, y=6 z=5 and k = 10, then?
if x, y, z < k/2, substitute them into xyz to get xyz < k^3 / 8

if x, y, z > k/2, then k-x < k/2, k-y < k/2, k-z < k/2
then xyz = (k-x)(k-y)(k-z) < k^3 / 8

for effort...please?
wmfchris
As lgdry15 got the correct answer I will perform a standard trick towards the solution.

Let u = (k-x)/x, v = (k-y)/y, w = (k-z)/z (The case for x/y/z = 0 is obvious, so WLOG suppose they are positive.)
Then x = k/(u+1), y = k/(v+1), z = k/(w+1)

So that the equality becomes uvw = 1 and to show that (u+1)(v+1)(w+1) >= 8k^3.

Since u,v,w > 0, the result is obvious by AM-GM.
liangv587
图解大法好
xxdeathx
math is too hard =/
Topic Starter
Scorpiour
lgdry15 got a modding ticket~~

and also thanks for other participants~

more quiz are coming
show more
Please sign in to reply.

New reply